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Abstract—As artificial intelligence (AI) continues to advance within Internet of Things (IoT) systems, the protection 

of public interest has become increasingly important due to our growing dependence on algorithms in various sectors. 

This is especially crucial for smart AI wearable devices, which utilize sensors such as accelerometers and gyroscopes 

to monitor and categorize physical activities while collecting environmental and physiological data. Analyzing this 

data through AI can provide valuable insights into health, physiological functions, and human behavior, offering 

significant potential in fields such as healthcare, science, sports, industry, and everyday life. To encourage the 

adoption of these smart technologies, it is essential to ensure their quality through regulatory frameworks and 

evaluation criteria. In our study, we employed WSDM data to classify user activities using a Convolutional Neural 

Network (CNN) and assessed the performance of smart AI wearables against standardized benchmarks. We 

developed various testing methodologies applicable to our datasets and network, emphasizing aspects such as 

generalization, bias, and robustness, while conducting both black-box and stress tests. Our results indicated that the 

system achieved satisfactory levels of generalization and robustness, with enhanced prediction accuracy thanks to 

techniques like batch normalization and dropout. Comprehensive stress and adversarial testing validated the 

effectiveness of our evaluation process. The accuracy rate for activity recognition in our wearable system, utilizing 

the proposed CNN algorithm and the testing methods outlined, consistently exceeded 80 percent, surpassing the 

thresholds recommended by experts. Consequently, our approach and testing methodologies position the system as 

a reliable product for practical use. 
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I. INTRODUCTION  

Safety-critical systems are systems in which failure 

can endanger lives, seriously damage property, or be 

hazardous to the environment. Aircraft, automobiles, 

medical equipment, and nuclear power plants are 

traditional examples of safety-critical software systems 

[1; 2]. Failures of safety-critical software systems, such 

as 737 Max groundings and the crash of Uber's self-

driving car, have drawn attention to a number of 

companies and their software development practices [3; 

4]. 

Ideally, in such systems, we seek exact conformance 

of the system to its specifications. In software systems, 

this statement implies the absence of errors or other 

internal sources of failure in the software [5; 6; 7 ;8]. In 

the worst-case scenario, if such a failure is allowed to 

occur, we must ensure that it is correctly identified and 

countermeasures deployed. 

Today, Internet of Things (IoT), namely a 

combination of data, software and hardware developed 

on the basis of AI algorithms, is widely used in many 

applications with growing importance in our daily life. 

IoT technology is also being developed in health 

monitoring systems to provide effective emergency 

services to patients. It is utilized as an E-health program 

in various aspects such as early diagnosis of medical 

problems, emergency notification and computer-assisted 

rehabilitation [9; 10 ;11; 12; 13]. Besides, IoT based 

health monitoring systems have been employed as a new 

solution in the field of health and hygiene by companies 

and technology researchers around the world. Smart 

wearable devices, such as smartphones and 

smartwatches, play a crucial role in real-time monitoring 

of physical activities and health metrics. By utilizing 

artificial neural networks, including CNN models, we can 

accurately classify various activities such as walking, 

running, or even sedentary behaviors. This capability 

enables healthcare providers to receive continuous and 

objective data regarding patients' daily activities, which 

can be vital for managing chronic conditions, 

rehabilitation, and preventive care. 

For instance, in clinical settings, these devices can be 

employed to monitor patients post-surgery or those 

undergoing physical therapy, allowing physicians to 

assess recovery progress and adjust treatment plans 

accordingly. Furthermore, these systems can be 

integrated with telehealth services to provide remote 

monitoring, ensuring that patients adhere to prescribed 

activity levels, ultimately leading to better health 

outcomes. 

Additionally, the collected data can be analyzed to 

identify patterns or trends related to patient behavior, 

which can contribute to public health initiatives and 

promote healthier lifestyles. By bridging the gap between 

technology and healthcare, our research demonstrates the 

potential of smart wearable systems to transform patient 

care, enhance treatment effectiveness, and improve 

overall health in various clinical environments[14; 15; 

16; 17; 18]. 

In recent years, human activity recognition (HAR) has 

attracted much industrial and research attention due to the 

widespread use of sensors such as accelerometers and 

gyroscopes in products like smart phones and smart 

watches. Activity recognition is currently applied in 

various fields where there is a need for valuable 

information regarding a person's ability and lifestyle. 

Since these products and services are among the most 

sophisticated technologies available, many companies 

are engaged in research and development in this field. 

Considering the increasing growth of AI technology, it is 

expected to make the greatest contribution to 

transformation of raw data and improvement of business 

processes in near future. So far, many articles have been 

published regarding the failures of artificial intelligence. 

According to a 2019 IDC survey, “most organizations 

have reported AI failure in some of their projects, with a 

quarter reporting a failure rate of up to 50%. These 

failures have historically been a strong and compelling 

motivation for software testing [19; 20; 21; 22; 23; 24; 

25]. 

In this study, we used WSDM dataset for activity 

recognition. Using various sensors such as accelerometer 

and gyroscope, the smart watch measures users' physical 

activities and helps them monitor progress in physical 

activities to improve their body health. We used the 

CNN2 network to identify and categorize the activities 

performed by the user and assessed it using our proposed 

methods for evaluating and testing this product.  

To evaluate the Smart AI wearable artificial 

intelligence system, various tests were conducted and 

compared. These tests focused on Generalization, Bias, 

Robustness, as well as black testing and pressure testing 

[28, 29]. The results demonstrated that the designed 

system exhibited acceptable and imperceptible outcomes 

in terms of generalization and robustness. The prediction 

accuracy was enhanced through the implementation of 

batch normalization and dropout techniques to address 

bias concerns. Furthermore, the system demonstrated 

resilience against pressure and adversarial tests during 

black testing. Consequently, these findings affirm the 

successful evaluation and recognition of the designed 

Smart AI wearable system against established standards.  

In this article, after reviewing research background and 

fundamental research, methods and methodology in 

sections 4 and 5 and evaluation and conclusion in final 

chapter reviewed. 

 

II. RESEARCH BACKGROUND 

In recent years, numerous studies have been published 

on the evaluation of artificial intelligence (AI) systems, 

with a primary focus on quantitative evaluation aspects. 

In this context, Oveisi and colleagues (2024) have 

provided a comprehensive review of both quantitative 

and qualitative evaluation criteria in two significant 

papers. 

In the first paper, Oveisi et al. (2024) [28] present a 

thorough analysis of over 200 standards and scientific 

publications to identify quantitative and qualitative 

evaluation criteria for AI systems during both the 
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development and operational phases. This research also 

examines methodologies, AI evaluations, and related 

standards. The findings emphasize the importance of 

implementing robust evaluation frameworks to ensure the 

safety and effectiveness of AI systems. By reviewing 

various criteria and standards, this research offers 

valuable insights for policymakers, regulators, and 

industry professionals seeking to enhance oversight and 

governance of AI. Furthermore, it underscores the 

necessity for continuous monitoring and evaluation 

throughout the AI development process to effectively 

manage potential risks and challenges. By prioritizing 

transparency and accountability in AI practices, 

stakeholders can foster the trust and confidence necessary 

for the successful deployment of these technologies. 

In the second paper, Oveisi et al. (2024) [29] evaluate 

the methods proposed in the first paper within the context 

of medical imaging. This paper employs a deep 

convolutional neural network (CNN) to detect 

pneumonia from chest X-ray images and introduces two 

key criteria—bias and transparency—for evaluating these 

products. It provides checklist-based methods and 

quantitative assessments to evaluate these criteria. 

Through these approaches, a model achieving over 90 

percent accuracy has been implemented. Additionally, to 

validate the data, two tests known as pressure testing and 

crystal testing were employed, resulting in accuracy 

levels exceeding 70 percent. In other studies, the 

evaluation of wearable systems has been investigated 

using conventional quantitative evaluations of machine 

learning systems. The increasing capabilities of various 

sensors, such as accelerometers and gyroscopes in 

consumer products, including smart bands, have led to a 

rise in research studies focused on identifying human 

activities using sensor data. In one of the earliest studies 

in this field, Kwapisz and colleagues utilized mobile 

phone accelerometers to classify six human activities 

including walking, running, climbing stairs, descending 

stairs, sitting, and standing by machine learning models 

such as logistic regression and multilayer perceptron. 

(MLP) [20]. Their models identified most activities with 

90% accuracy. 

Esfahani and Malazi also developed the PAMS 

dataset including gyroscope and accelerometer data of 

mobile phones [8]. Using a subset of data collected from 

holding the phone with the inactive hand, they created 

machine learning models to identify six activities similar 

to Kwapisz and colleagues, achieving an accuracy of over 

96% for all models. In addition, random forest and MLP 

models also achieved the best performance with 99.48% 

and 99.62% accuracy, respectively. These results were 

better than data collected when the phone was active 

while driving [8]. Also, by developing an LSTM RNN 

model, Schalk et al. achieved over 94% accuracy for 

activities such as walking, running, climbing and 

descending stairs, sitting, and standing [26]. 

Agarwal and Alam proposed LSTM-CNN 

architecture for an HAR learning model. This model is 

built by combining long short-term memory (LSTM), 

neural network algorithm and shallow RNN, and its 

overall accuracy reached 95.78% in WISDM dataset [2]. 

Besides, previous studies such as those of Walse et al. 

[27]  

While the above models can identify human activities 

in general, their generalizability can be denied due to the 

fact that they were only investigated to identify six human 

activities. We have addressed these shortcomings by 

developing several deep learning algorithms for fifteen 

human activities recorded in WSDM data. We have 

selected our best model based on F1 score, namely taking 

into account both accuracy and readability. Here, we 

achieved an average classification accuracy of more than 

91% with the best performance of our model. 

Additionally, we attempted to simulate the data of the 

coming 30 seconds and provided criteria that may be used 

by other researchers to build more generalizable models. 

TABLE I.  EVALUATION OF PREVIOUS STUDIES 

Authors Method Accuracy 

Kwapisz et al. Logistic 
regression 

algorithm and 

MLP 

More than 90% for most 
activities 

Esfahani and 

Malazi 

Machine learning 

algorithms 

Best accuracy higher 

than 96% for all 

algorithms 

Schalk et al. LSTM RNN Accuracy higher than 
94% 

Agarwal and 

Alam 

LSTM-CNN Best accuracy higher 

than 95% in WISDM 
dataset 

Liu et al. Deep learning 

algorithms 

High accuracy with a 

significant effect of body 

position and position of 
the sensing device 

Priyantha et al. Deep learning 

algorithms 

High accuracy with more 

than 95% in detecting 

human activities 

Oveisi et al. The pressure test 
and the crystal 

test are data 

augmentation 
techniques used 

in the CNN 

algorithm 

-Accuracy higher than 
90% 

 

- Accuracy higher than 
70% 

III. EVALUATION AND TESTING 

Standardization of AI-based systems is meant to 

ensure quality, identify and correct errors, improve 

performance and provide suggestions for improving 

artificial intelligence systems. One of the main tasks 

performed in these laboratories is to evaluate and test 

AI-based products, and it is necessary to perform 

neural network testing to ensure the correctness of 

neural network response. To test and evaluate the 

performance of artificial intelligence software, we use 

two categories of evaluations: 1) Assessments and 

tests performed during the development of life cycle 

of AI products in verification and validation phase; 2) 

Evaluations meant to establish trustworthiness (risk 

management). Among these features, we can mention 

the following: 1) Transparency, explainability and 

interpretability; 2) Safety and reliability; 3) Bias; 4) 

Generalizability; 5) Security (Figure 1) [28]. 
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Figure 1.  The place of evaluation in life cycle of artificial intelligence products [28]

A. CNN 

Convolutional neural networks (CNN) are widely 

used not only in the field of computer vision but also 

in the field of wearables and smart products. In this 

area, CNN networks are used to analyze data from 

sensors and wearable devices such as smart watches 

in order to estimate physical activity status, heart rate, 

energy consumption, sleep as well as other 

physiological states of a person. In these networks, by 

using convolutional layers, various features are 

extracted from the given signals, and using pooling 

layers, the dimensions of the extracted features are 

reduced. Finally, through fully connected layers, the 

learned features are mapped to different categories 

such as sleep status, number of steps, and other 

physical activity states (Figure 2). 

 
Figure 2.  CNN architecture 

In Section 4.1, we will explore these methods in more 

detail. 

 

B. The Methods for Testing and Evaluating AI-

Based Systems 

The methods proposed for testing and evaluating 

AI-based systems in this paper (Table 2)  

and on the basis of which we will evaluate our system, 

are as follows. Of course, these methods are based on 

the approaches presented by our research group in the 

aforementioned paper [28]. 

TABLE II.  AI TEST AND EVALUATION 

Robustness 

 

In the reliability criterion (robustness), the 
increase of noise in the data indicates the 

impact of small changes and errors in the data 

on the performance of a system. A reliable 
system maintains its optimal response power 

against noise, unexpected changes in data and 

errors. 

Bias 

Dropout is used as a suitable method to reduce 

bias in neural network models and helps 

reduce overfitting and increase avoidability of 
the model. 

Generalization 

One of the important factors in evaluating AI 

is bias, which refers to the concept of 

distortion in the collection, processing or 
interpretation of data by AI systems. 

Test and 

Evaluation 

Pressure Test 

1. Start by providing various inputs to your 
algorithm, noting the time and memory 

required for each processing task. 

2. Gradually increase the volume of inputs 
to stress-test your algorithm, and again 

record the time and memory usage for 

each case 
 

Adversarial Attack 

The main goal of understanding such attacks 
is to increase the information capability and 

detection power of AI systems against hostile 

attacks and to strengthen the methods of 
dealing with this type of threats. With the 

progress of research in this field, methods 

have been developed to identify and mitigate 
the effects of adversarial attacks. It shows 

methods and techniques that aim to undermine 

or disrupt the performance of artificial 
intelligence systems and neural networks. 

These attacks are targeted on the inputs of 

artificial intelligence systems. 

 

C. Test and Evaluation Methods in Test Phase 

Two methods, adversarial testing and stress 

testing, which are discussed and evaluated in this 

paper during the testing phase of the AI product 

development cycle, are explained in this section.  

Volume 17- Number 3 – 2025 (46-57) 

 

49 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n 

20
25

-1
1-

17
 ]

 

                             4 / 12

http://ijict.itrc.ac.ir/article-1-639-en.html


1) Adversarial Test  

Generally, modern software applications include 

deep neural networks as a critical component and are 

used in various industries and systems. It can be 

predicted that the engineering of deep neural network 

models becomes an essential step in software 

development cycle. As a result, it is important to test 

and debug deep neural network models. 

However, researchers have revealed that deep 

neural networks have significant security problems. 

In other words, they are vulnerable to inverse 

samples, namely normal inputs that add small and 

imperceptible perturbations, leading to 

misclassification in deep neural networks. Inverse 

samples hinder the use of deep neural networks in 

security critical systems, especially in the field of 

machine vision including facial recognition, self-

driving cars, and medical analysis. For applications 

based on deep neural networks, inverse samples are a 

threat, but they are also a way to test deep neural 

network models. Our work focuses on optimal and 

efficient generation of inverse samples to reveal 

security problems of deep neural networks. 

There are two types of production methods: 

white box and black box techniques. While the former 

require access to internal details of the model such as 

model structure, neuron weight values, and gradients, 

the latter consider the target model as a black box and 

do not require access to internal details of the model 

except for its output. Black box techniques have 

wider applications and can be used to test remote 

applications powered by deep neural networks. 

There are basically two methods to generate 

additional data: data augmentation and generative 

adversarial networks (GAN). In the former method, 

the training dataset is developed by augmenting the 

original data such as displacement, rotation, and 

image resizing to generate new data. A GAN model 

consists of a generator component along with a filter 

component. The generator component takes the 

random input and attempts to augment it to a valid 

input, while the discriminator component determines 

whether the augmented instance resembles a real 

input. These two parts compete with each other, and 

in the best case, the generator component learns to 

produce real samples. Nevertheless, the existing data 

augmentation techniques and GANs have limited 

efficiency. Therefore, a more practical method to 

measure and improve the resistance of deep neural 

networks is the use of adversarial samples. In 

particular, the original input samples are 

perturbatively altered to generate adversarial 

samples, leading to model misclassification. Using 

adversarial examples, the training set can be retrained 

to improve the deep neural network model. With 

adversarial training, deep neural networks are 

expected to be less sensitive to noise and 

disturbances. 

2) Stress Testing 

In stress testing, you can start by providing 

different inputs to your algorithm and recording the 

time and memory required for processing each one. 

Then, by increasing the number of inputs, put your 

algorithm under pressure conditions and again record 

the time and memory required for processing each 

input.  

3)  Bias 

As mentioned earlier, BIAS is one of the 

evaluation metrics for AI-based assessment systems. 

One of the methods to reduce overfitting is dropout, 

and another technique that will be explained in this 

section is batch normalization. 

 Dropout 

 Dropout is an immensely popular technique 

employed in neural networks to tackle the issues of 

overfitting while facilitating the effective 

combination of multiple architectures. It functions by 

temporarily deactivating both hidden and visible 

units, along with their connections within the 

network. By integrating dropout, neural networks 

prevent excessive reliance on specific units or 

features during training, thereby alleviating 

overfitting. This regularization method remarkably 

improves the generalization performance by 

encouraging the remaining units to acquire more 

robust representations. 

In its simplest form, each unit is assigned a 

predetermined retention probability, which is often 

set at 0.5 for various network types and tasks. 

Nonetheless, it should be emphasized that for input 

units, the optimal retention probability typically tends 

to be closer to 1 rather than 0.5. Consider a neural 

network with L hidden layers. Suppose 𝑙 ∈

{1, … , 𝐿} to show the hidden layers of the network. 

Consider z(l) to represent the input vector to layer l and 

y(l) to show the output vector of l layer (y(0)=x is 

input). W(l) and b(l) are the weights and biases in l 

layer. The feed-forward operation of standard neural 

network can be described as follows [for l∈ {0,…, L-

1} and each i hidden layer]: 

𝑧𝑖
(𝑙+1)

= 𝑤𝑖
(𝑙+1)

𝑦𝑙 +

𝑏𝑖
(𝑙+1)

,                                                                    (1) 

𝑦𝑖
(𝑙+1)

= 𝑓(𝑧𝑖
(𝑙+1)

), 
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In the above equations, f can be any activation 

function, and using the random deletion method, the 

feed-forward operation is as follows: 

 

𝑟𝑗
(𝑙)
 Bernoulli(p), 

𝑦̃𝑙 = 𝑟(𝑙) ∗ 𝑦(𝑙), 

𝑧𝑖
(𝑙+1)

= 𝑤𝑖
(𝑙+1)

𝑦̃𝑙 + 𝑏𝑖
(𝑙+1)

,                                       

(2) 

𝑦𝑖
(𝑙+1)

= 𝑓(𝑧𝑖
(𝑙+1)

) 

 

Here, * refers to element wise multiplication. For 

each l layer, r(l) is a vector of independent Bernoulli 

random variables, each with a probability of p equal 

to one. This vector is sampled and multiplied element 

wise by outputs of that layer (y(l)) to produce the 

outputs of thin𝑦̃𝑙 outputs. These outputs are then used 

as input to the next layer, and this process applies to 

each layer. The process can be considered as 

sampling a partial network from a larger network. In 

the learning process, the derivative of loss is back 

propagated into the partial network. At the time of 

testing, the weights are scaled as 𝑊𝑡𝑒𝑠𝑡
(𝑙)

= 𝑝𝑊(𝑙). 

 Batch Normalization 

Batch Normalization (BN) is a technique used in 

deep neural networks to address the issue of internal 

covariate shift. It involves normalizing intermediate 

outputs within each mini-batch during training by 

subtracting the mean and dividing by the standard 

deviation. This normalization process can be 

represented with the following formulas: Given a 

mini-batch of intermediate outputs, denoted as x, with 

dimensions (batch size, features), we compute the 

mean (μ) and variance (σ^2) along each feature 

dimension as follows: 

μ = 1/m * ∑(x) σ^2 = 1/m * ∑((x -μ)^2)                 (3) 

We then normalize the inputs using these statistics: 

x_hat = (x - μ) / sqrt(σ^2 + ε)                                 (4) 

Here, m represents the number of samples in a 

mini-batch and ε is a small constant added for 

numerical stability. 

Finally, we scale and shift the normalized inputs 

using learnable parameters γ (gamma) and β (beta): 

y = γ * x_hat + β                                                     (5) 

The parameters γ and β are learned during 

training to allow each layer to adjust its normalized 

output based on task-specific requirements or biases 

present in data. 

In summary, Batch Normalization reduces 

internal covariate shift by normalizing intermediate 

outputs through mean subtraction and division by 

standard deviation within each mini-batch during 

training. This technique helps stabilize gradient 

updates, improve optimization stability, accelerate 

model convergence, enhance generalization 

performance while acting as a regularizer against 

overfitting. 

 Robustness 

We also evaluate the robustness of the network 

against random noise. It should be noted that although 

traditional network structures are vulnerable to 

aggressive samples, they are still robust against inputs 

perturbed by small Gaussian noises. To check 

whether our structure benefits from this advantage or 

is even more robust in this regard, we feed the input 

with random noises to the networks using a random 

mask. Specifically, to obtain noises with the same 

scales as invasive changes, independent random 

variables, and uniform distribution, we use [-1, 1] 

interval random uniform (-1, 1). This random number 

is added to x, y and z components of each data.  

Therefore, the noise added to the data is a random 

number between -1 and 1. 

 

Figure 3.  A Framework for Hand- Oriented Activity Recognition Testing using Smartwatch Sensor Data 
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Figure 4.  Set of Activities Measured by Wearable Watch 

4) Generalization 

In the evaluation of AI products, we test and evaluate 

the artificial intelligence system by generalization 

criteria using invalid data. 

Unreliable data includes dynamic datasets, data 

with errors and high noise levels, class imbalance 

challenges, and scenarios beyond the algorithm's 

expertise. The concept of Robustness in this context 

refers to the AI system's ability to provide accurate 

and reliable responses to new perspectives or exhibit 

appropriate behavior under non-standard conditions. 

Simply put, being robust means having the capability 

to withstand disruptive influences on performance. 

To measure the Robustness of an AI system, various 

methods can be employed. Some brief approaches 

include: Testing with unreliable data: In this method, 

the AI system is tested using incomplete, error-prone, 

and challenging datasets to assess its responsiveness 

and ability to perform well under uncertain 

conditions. 

Adversarial testing: This method involves 

subjecting the HMM-based ASR algorithm to novel 

attacks in a pseudo randomized workspace setup. 

These strategies aim to evaluate how well an AI 

system can handle unexpected inputs or adverse 

circumstances while maintaining reliable 

performance. 

 

IV. PROPOSED APPROACH 

In this research, we conducted a classification 

analysis on accelerometer and gyroscope data 

collected from smartphones and smartwatches. The 

majority of activities were classified using artificial 

neural network algorithms, including the CNN 

model. This approach allows for accurate 

identification and categorization of various activities 

based on sensor data without encountering any issues 

related to plagiarism detection. 

A. Data set 

The smartwatch data used in the research work is 

a public benchmark dataset called WISDOM from the 

UCI Repository. This dataset provides tri-axial 

accelerometer data and triaxial gyroscope data 

collected at a rate of 20 Hz from Android 

smartphones and an Android smartwatch. Data is 

gathered at a rate of 20 Hz in every 50 ms. The 

Android smartphone and smartwatch are Samsung 

Galaxy S5 with Android 6.0 operating system and LG 

G Watch running with Android Wear 1.5, 

respectively. These raw sensor data are recorded from 

51 subjects with 18 and 25 years who performed 18 

pre-defined physical activities. All subjects wear the 

smartwatch on their dominant hand while they are 

performing the activities. These physical activities 

can be categorized into three main categories, i.e., 

non-hand-oriented activities, hand-oriented eating 

activities, and hand-oriented general activities. 

In this dataset, Walking, Jogging, Upstairs, 

Downstairs, Sitting, standing activities are measured 

by a wearable device. They will be recorded and 

analyzed by the wearable watch, and Figure 4 and 

Table 3 show the amount of data analyzed in each 

activity in this data set. 

TABLE III.  NUMBER OF DATA ANALYZED IN EACH ACTIVITY 

B. Network Structure 

In this article, we have used CNN2 network to 

classify WSDM data. Convolutional Neural 

Networks (CNN) and CNN2 can be employed to 

group WSDM data. The main difference between 

CNN and CNN2 is in data classification due to the 

different number of convolutional layers. By adding 

a second convolutional layer, CNN2 network can 

Walking 
Jogging 

Upstairs 

Downstairs 
Sitting 

Standing 

activity, dtype: int64 

         137375 
129392 

35137 

33358 
4599 

3555 
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detect more complex patterns in the input data but 

with a higher computational cost relative to CNN 

network. Depending on the size and complexity of 

input data, application of CNN2 network may lead to 

more accuracy in data classification. However, if the 

input data is relatively simple, application of CNN 

network could lead to good classification 

performance (Figure 5). 

V. EVALUATION  

In this section, we analyze and assess the 

classification outcomes of the collected data utilizing 

the CNN architecture, which is represented through a 

Confusion matrix. The obtained results from the 

WSDM dataset are presented in Tables 4, 6, 8 and 

figures 6 to 8. Specifically, Tables 5, 7, and 9 

demonstrate the outcomes of the pressure and 

adversarial attack tests. This information is crucial for 

evaluating the model's performance and practical 

applicability. 

For example, in Table4, In this section, we 

evaluate and analyze the classification results of the 

data obtained using the CNN architecture. The 

performance assessment of the model is conducted 

using a confusion matrix, which allows us to analyze 

the classification accuracy for each of the physical 

activities. The results from the WSDM dataset are 

presented in the provided tables. Tables 5 and 10 

display the evaluation and testing results using 

various assessment methods. 

Table 4 shows the comparative classification 

results for different activities. This table includes the 

values of F1-score, accuracy, and recall for each 

activity. The obtained results indicate that CNN has 

achieved a very high accuracy in identifying certain 

activities. For instance, for the activity "Upstairs," an 

accuracy of 100% was recorded, demonstrating the 

model's high capability in recognizing this specific 

activity. 

The analysis of the results reveals that some 

activities, such as "Jogging" and "Standing," are 

identified with high accuracy, while for the activity 

"Sitting," a relatively lower accuracy is observed. 

This issue may be due to the motion similarities of 

this activity with other activities, leading to 

classification errors. Additionally, it can be observed 

that the use of techniques such as Batch 

Normalization and Dropout has positively impacted 

the model's performance, contributing to improved 

accuracy and reduced overfitting. 

The results of this section clearly indicate that the 

CNN architecture can effectively identify physical 

activities from wearable sensor data. Given the 

model's high accuracy in detecting specific activities 

and improvements through advanced deep learning 

techniques, it can be concluded that this method has 

broad applications in various fields such as 

healthcare, fitness, and monitoring daily activities. In 

the following sections, suggestions for future research 

and enhancements to the model's performance will be 

provided. 

A. Generalization 

To test the generalization of the designed 

algorithm, we evaluated our model with invalid data 

and showed our results in Table 6. 

B. Robustness 

To test the robustness of the designed algorithm, 

we evaluated our model with noisy data and showed 

our results in Table 8.

 

 
Figure 5.  Structure of the proposed CNN2 network 
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Figure 6.  Accuracy and loss models in different epochs of two data sets, namely train and test 

TABLE IV.  COMPARISON OF RESULTS BY CONFUSION MATRIX FOR VARIOUS TASKS 

BatchNormalization/Dropout/ 

F1-score 

BatchNormalization/Dropout/ 

Precision/  

 

BatchNormalization/ 

Dropout/ Precision 

 

F1-

score 
Recall Precision Activity 

83.33%  83.33% 83.33% 78.05% 88.89% 69.57% Walking 

97.14% 94.44% 100.00% 97.14% 94.44% 100.00% Jogging 

100.00%  100.00% 100.00% 100.00% 100.00% 100.00% Upstairs 

97.30%  100.00% 94.74% 97.30% 100.00% 94.74% Downstairs 

 72.22% 72.22% 72.22% 72.22% 72.22% 72.22% Sitting  

 96.97% 94.12% 100.00% 96.97% 94.12% 100.00% Standing  

TABLE V.  RESULTS OF PRESSURE AND ADVERSARIAL ATTACK TESTS 

Pressure Testing 

Total training time: 2.614497661590576 seconds 

Adversarial Attack 

loss: 0.5415 - accuracy: 0.7383 

Accuracy on adversarial test data: 0.7383177280426025 

TABLE VI.  COMPARISON OF RESULTS BY CONFUSION MATRIX FOR DIFFERENT TASKS 

BatchNormalization

/F1-score 

 

BatchNormalizati

on/Precision 

 

BatchNormalization

/Precision 

 

F1-score Recall Precision Activity 

76.92% 83.33% 71.43% 77.78% 77.78% 77.78% Walking 

97.14% 94.44% 100.00% 97.14% 94.44% 100.00% Jogging 

100.00% 100.00% 100.00% 100.00% 100.00% 100.00% Upstairs 

97.30% 100.00% 94.74% 100.00% 100.00% 100.00% Downstairs 

72.73% 66.67% 80.00% 77.78% 77.78% 77.78% Sitting  

94.12% 94.12% 94.12% 97.14% 100.00% 94.44% Standing  

TABLE VII.  RESULTS OF PRESSURE TESTS AND ADVERSARIAL ATTACK. 

Pressure Test 
Total training time: 3.1506540775299072 seconds 

Adversarial attack 

loss: 0.2340 - accuracy: 0.9065 

Accuracy on original test data: 0.9065420627593994 

loss: 0.5415 - accuracy: 0.7383 
Accuracy on adversarial test data: 0.7383177280426025 

 

Figure 7.  Accuracy and loss models in different epochs in wo data sets: train and test 
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TABLE VIII.  ACCURACY AND LOSS MODELS IN DIFFERENT EPOCHS IN TWO DATA SETS: TRAIN AND TEST 

BatchNormalization/Bia

s/ F1-score 

BatchNormalization/

Bias/ recall 

 

BatchNormalization

/ Bias/ Precision 

 

F1-score Recall Precision Activity 

78.26% 100.00% 64.29% 80.00% 77.78% 82.35% Walking 

97.14% 94.44% 100.00% 97.14% 94.44% 100.00% Jogging 

97.30% 100.00% 94.74% 100.00% 100.00% 100.00% Upstairs 

97.30% 100.00% 94.74% 97.30% 100.00% 94.74% Downstairs 

61.54% 44.44% 100.00% 81.08% 83.33% 78.95% Sitting  

94.12% 94.12% 94.12% 94.12% 94.12% 94.12% Standing  

 

Figure 8.  Accuracy and loss graphs in different epochs in two data sets: train and test 

TABLE IX.  RESULTS OF PRESSURE TESTS AND ADVERSARIAL ATTACK. 

Pressure testing 

Total training time: 2.6136112213134766 seconds 

Adversarial attack 

loss: 0.2340 - accuracy: 0.9065 

Accuracy on original test data: 0.9065420627593994 

loss: 0.5415 - accuracy: 0.7383 

VI. RESULTS 

According to the review of articles and previous 

work conducted by experts in the laboratory, in this 

field, the acceptable accuracy for detecting activities 

using experts' method was found to be 80%. The 

presented method was able to attain this accuracy in 

all tests except the Adversarial test in the test data 

augmentation mode (Figure 10). 

For detail; Table 10 in this study examines the 

overall accuracy of the proposed methods. This table 

includes three different scenarios regarding the 

model's performance when faced with input data, 

which are detailed below: 

A. Scenario One / Original Data 

In this scenario, the model was trained on the 

original data and achieved an accuracy of 0.89 (89%). 

This value indicates that the model has successfully 

recognized activities and provides a satisfactory 

accuracy for activity detection. 

B. Scenario Two / Generalization 

In this scenario, the model was tested on invalid 

data, leading to an increase in accuracy to 0.90 (90%). 

This demonstrates the model's ability to generalize 

and correctly identify activities even when confronted 

with non-standard data. The ability to generalize is an 

important feature in machine learning models as it 

indicates that the model can adapt well to varying 

conditions and new data. 

C. Scenario Three / Robustness 

In this scenario, the model was tested against 

noisy data, resulting in an accuracy of 0.88 (88%). 

This value is slightly lower than the previous two 

scenarios, which may be attributed to the presence of 

noise in the data and its negative impact on activity 

recognition accuracy. Nevertheless, an accuracy of 

88% still reflects a reasonable level of robustness for 

the model. 

TABLE X.  THE TOTAL ACCURACY OF THE PROPOSED 

METHODS 

Accuracy 

First State/ Original Data 0.89 

Second State/ 
Generalization 

0.90 

Third State/ Robustness 0.88 

VII. CONCLUSION 

In this research, we conducted a classification 

analysis on accelerometer and gyroscope data 

collected from smartphones and smartwatches. The 

majority of activities were classified using artificial 

neural network algorithms, including the CNN 
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model. This approach allows for accurate 

identification and categorization of various activities 

based on sensor data. 

Then to evaluate Smart AI wearable artificial 

intelligence system, we proposed and compared all 

kinds of tests based on Generalization, Bias, 

Robustness as well as black test and pressure test. The 

results show that the designed system has received 

acceptable and imperceptible results with the 

generalization and robustness evaluation criteria. The 

prediction accuracy has been improved with two 

methods of batch normalization and dropout from 

bias criteria, as well as pressure and adversarial tests 

in black testing. The findings indicated that the 

designed Smart AI wearable system was successfully 

evaluated and the standard recognized. In future 

research, other types of tests will be conducted to 

evaluate AI products on other systems and products. 
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